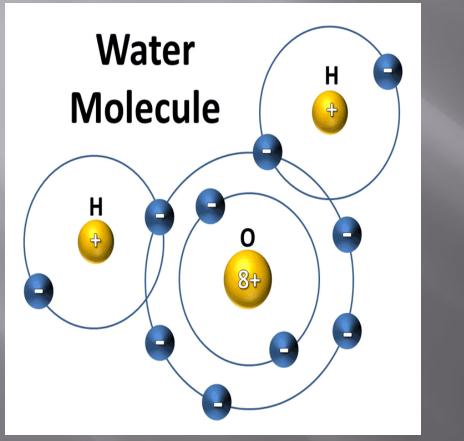
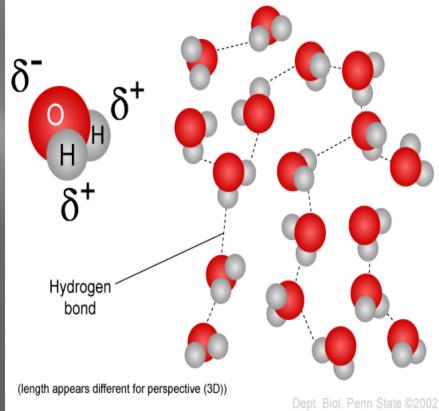
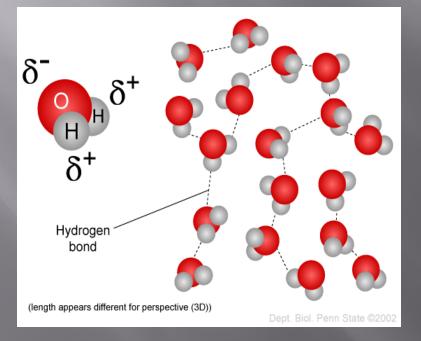
WATER AND SOLUTIONS

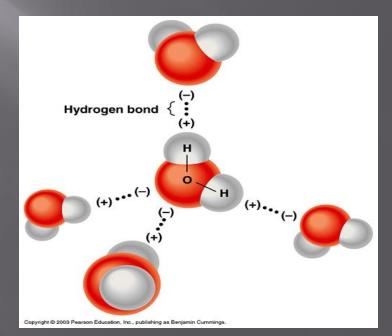

Section 6.3 SB1a,d,e ? What properties of Water make it INVALUABLE to Living Things?


Water

 \square 70% of the body Major component of cells Helps maintain homeostasis Maintains body temperature • Moves nutrients and waste ■ 70% of the earth Regulates earth's temperature Solid water floats!

Structure

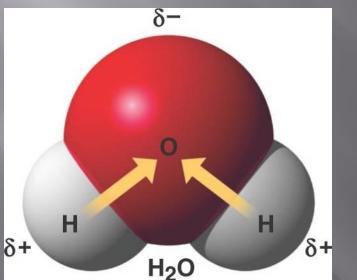


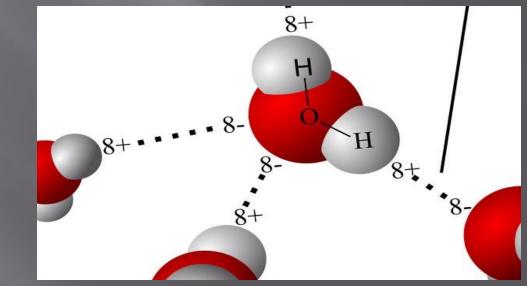


Bonding & Polarity

- A single water molecule is composed of 1 oxygen atom attached to 2 hydrogen atoms with covalent bonds — this is a tiny molecule!
- Water molecules are polar because the electrons (e-) that are shared in the covalent bond are not shared equally
 - The e- spend more time around the oxygen atom giving it a partially negative charge and less time around the hydrogen atoms giving them a partially positive charge

Bonds form between water molecules as a result of their polarity. Water molecules form hydrogen bonds between the positive pole of one molecule (hydrogen atoms) and the negative pole of another molecule (oxygen atom).

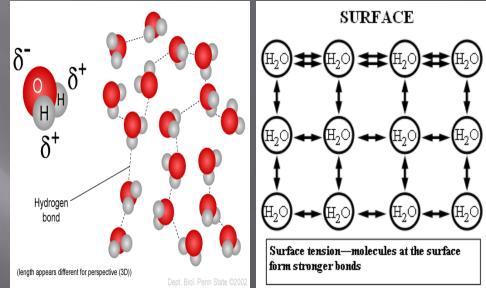



Polarity

- Molecules that have an unequal distribution of charges are called polar molecules
- Polarity is the property of having two opposite poles

Hydrogen Bond

 A hydrogen bond is a weak interaction involving a hydrogen atom and a fluorine, oxygen, or nitrogen atom

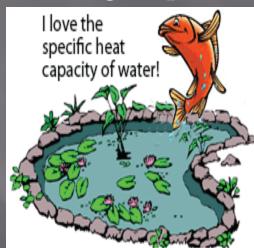


Properties of Water

Cohesion

- The attraction of water molecules to one another
- Surface Tension
 - The enhanced attraction of water molecules to one another at the surface

Adhesion


- The attraction of water molecules to a solid like glass or a cell wall.
- Capillary Action
 - Water moving up a tube or stem

High Heat Capacity

- It requires a lot of energy to change water's temperature. It "resists" temperature change.
 - Regulates the earth's temperature
 - Regulates the body's temperature
- High Heat of Vaporization
 - It requires a lot of energy to move water from the liquid phase to the gas phase
 - Again, this helps to regulate temperature
 - For example, sweating helps to cool the body

Water Expands When It Freezes!

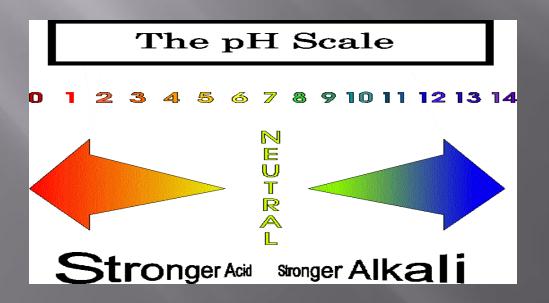
Solid water is less dense than liquid waterThis is why ice floats!

Water is the "Universal Solvent!"

 Because of its small size and polarity it is capable of dissolving many substances

Solutions

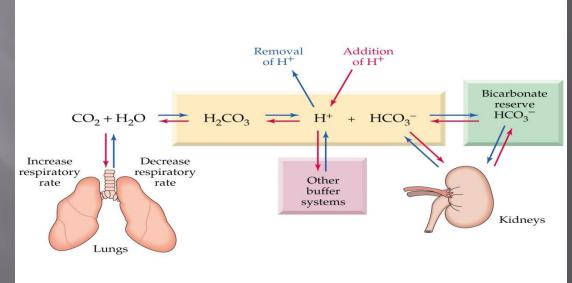
- Solvent + solute = solution
- In a solution the solute is dissolved in and evenly distributed throughout the solvent.



Acids & Bases

- An acid is a substance that gives away H+ ions in a solution
- A base is a substance that gives away OH- ions in a solution
- The acidity of a solution can be measured on a pH scale

ue Examples	 Battery acid 	Stomach acid	 Lemon juice, 	ω Orange juice,	Tomatoes	Gananas Normal rainwater	ه Urine, healthy	A Blood, tears	∞ Seawater	ه Baking soda	D Great Salt L	1 Household	5 Soapy wate	Cven cleaner	F Sodium hydroxide (NaOH)
/alu	ľ		1	3	4	5	ľ	<u> </u>	<u> </u>	9	10		12	13	14
pH Value	-	Inc	reas	ingly	aci	dic	1	-Neutral Increasingly basic							


- The pH scale measures the concentration of H+ in a solution
- Acidic solutions have a pH less than 7
- Basic solutions have a pH greater than 7
- A pH of 7 is neutral

pН	Va	alue	Examples
	1	- 0	Battery acid
Ī			Stomach acid
creas		- N	Lemon juice, vinegar
Increasingly acidic		- ω	Orange juice, cola
y aci		4-	Tomatoes
dic		- л	Bananas Normal rainwater
		- ത	Urine, healthy lake
	Neutral	- 7	Pure water Blood, tears
	Ĩ	- ∞	Seawater
Incr		- 9	Baking soda
easir		- 3	Great Salt Lake
ngly		- =	Household ammonia
Increasingly basic		- 12	Soapy water
Ĭ		- చ	Oven cleaner
	¥	- 14	Sodium hydroxide (NaOH)

Buffers

- Substances that can react with acids or bases to resist changes in pH
- Our bodies contain buffers that help maintain our pH within an acceptable range
 - For example, the carbonic-acid-bicarbonate helps to maintain our blood pH at 7.4
 - If our blood pH rises above 7.8 or below 6.8 we could die!

