Non-Mendelian Genetics

- Standard: Students will analyze how biological traits are passed on to successive generations
- Element: Using Mendel's laws, explain the role of meiosis in reproductive variability
- EQ: What are some exceptions to Mendelian genetics?
- Gregor Mendel was fortunate to have studied pea plants because of their simple patterns of heredity
- He used these patterns to discover that one trait is always dominant over the other

- Sometimes an organism's traits don't follow the rules that Mendel came up with, and today we will learn about some of these cases, called codominance, incomplete dominance, and sex-linked traits.

Codominance

- Occurs when two alleles are fully expressed at the same time
- In other words, both alleles are dominant

Example of Codominance: Roan Cattle

Punnett Square with Codominant

Alleles

- Since both alleles are dominant, each needs to be represented by a capital letter. Since they are both capital, we need two different letters to tell the two alleles apart
- IN the roan cow example, we can use the letter \mathbf{R} for the red allele and the letter $\underline{\mathbf{W}}$ for the white allele
- A cow with a heterozygous genotype would be RW which would result in the roan coloration
- That means we have three possible genotypes for coat color, each with a different phenotype:
$\begin{array}{ll}\text { - Genotype: } & \\ \text { Phenotype: } \\ \text { - RR } & \text { White } \\ \text {-KW } & \text { Red } \\ \text { Roan }\end{array}$
- Make a Punnett square for a cross between a white cow and a roan bull:
- What are the possible phenotypes of the offspring?

Incomplete Dominance

- Occurs when the offspring's trait is a combination of the two parents' traits.
- In this case neither allele is fully dominant

Punnett Square with Incompletely Dominant Alleles

- Alleles are represented by two different capitol letters
- In the snapdragon example, we can use the letter $\underline{\mathbf{R}}$ for the red allele and the letter $\underline{\mathbf{W}}$ for the white allele
- A flower with a heterozygous genotype would be RW which would result in pink petals
- That means we have three possible genotypes for flower color, each with a different phenotype:
- Genotype: Phenotype:
- WW
- RR
- KW

White
Red
Pink

- Make a Punnett square for a cross between a pink snapdragon and a red snapdragon:
- What are the possible phenotypes of the offspring?

Sex-Linked Trait

- In this case, the inheritance of a trait depends on the sex of the individual
- Before we talk about how to make a Punnett square for sex-linked traits, we must discuss the two different types of chromosomes, autosomes and sex chromosomes

- The chromosomes in an organism that determine its sex are called sex chromosomes.
- The rest of the chromosomes do not affect the sex of the organism. These are called autosomes
- Humans have 22 pairs of autosomes and a single pair of sex chromosomes. The sex chromosomes are called $\underline{\mathbf{X}} \& \underline{\mathbf{Y}}$
- Females have the genotype $\underline{\mathbf{X X}}$
- Males have the genotype XY

- A gene is sex-linked if it is found on a sex chromosome.
- This usually means it will be on the \underline{X} chromosome because the Y chromosome is very small and doesn't contain many genes
- So when we use Punnett Squares for sexlinked traits, we always use X and Y as the alleles, but we add a superscript to show the different traits
- X ${ }^{\mathbf{A}}$: sex-linked, dominant
- X^{a} : sex-linked, recessive

Punnett Squares with Sex-Linked Traits

- Hemophilia is a recessive sex-linked disorder so $\mathbf{X}^{\boldsymbol{H}}$ would be the normal allele and \mathbf{X}^{h} would be the allele that causes the disease
- Draw a Punnett Square for a man who has hemophilia and a woman who is homozygous dominant
- Genotypes:
- Man:
- Woman:

- Remember, females have two X chromosomes. Males only have one X (and one Y).
- If one X chromosome is defective, a female will have another copy, which is most likely normal. That means sex-linked traits affect males more than females.
- A female with one normal X and one defective X (for example XX) is said to be a carrier of the trait
- A carrier might pass the defective allele to her offspring even though she does not have the disease.
- Suppose a normal man and a woman who is a carrier for hemophilia have a child. What is the chance of this child having hemophilia?
- Genotypes:
- Man:
- Woman:

Multiple Alleles

Multiple Allees

Instead of just one dominant and one recessive allele, some characteristics are controlled by three or more alleles.

One common example of multiple alleles is the determination of human blood type. There are four major types of blood: Types $\underline{\mathbf{A}}, \underline{\mathbf{B}}, \underline{\mathbf{A B}}$, and $\underline{\mathbf{O}}$ (these types can also be + or - which results from a different gene for a protein known as Rh factor).

To make a Punnett square for multiple alleles, you need to know something about the inheritance pattern (what is
 dominant/recessive, what is codominant?). In the ABO blood group example, A and B are codominant and O is

Blood type AB recessive.

That means we have six possible genotypes for blood type, but four different phenotypes:

Genotype: Phenotype:
AA
Type A blood
AO
Type A blood
BB
Type B blood
BO
Type B blood
AB
Type AB blood
OO
Type O blood

- Make a Punnett square for a cross between a person with $A B$ blood and a person with type O:
- What are the possible blood types of the offspring?
- NOTE: Even though there are multiple alleles present in the population, each individual can only inherit TWO alleles (one from each parent).

